Conjugacy classes and finite p-groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CONJUGACY CLASSES IN FINITE p-GROUPS

Of course, in that problem we have to take into account that the class sizes impose restrictions on the group structure. E.g. if the sizes are {1, p}, then the nilpotency class has to be 2. More precisely: the class sizes of a p-group G are {1, p} iff |G′| = p (Knoche; see also Theorem 3 below). But we can ask, e.g., if, given any set S ≠ {1, p} of p-powers, does there exist a group of class 3 ...

متن کامل

COMPUTING THE PRODUCTS OF CONJUGACY CLASSES FOR SPECIFIC FINITE GROUPS

Suppose $G$ is a finite group, $A$ and $B$ are conjugacy classes of $G$ and $eta(AB)$ denotes the number of conjugacy classes contained in $AB$. The set of all $eta(AB)$ such that $A, B$ run over conjugacy classes of $G$ is denoted by $eta(G)$.The aim of this paper is to compute $eta(G)$, $G in { D_{2n}, T_{4n}, U_{6n}, V_{8n}, SD_{8n}}$ or $G$ is a decomposable group of order $2pq$, a group of...

متن کامل

ON THE NUMBER OF CONJUGACY CLASSES OF FINITE p-GROUPS

Denote k(G) the number of conjugacy classes of a group G. Some inequalities are deduced by arithmetic means for k(G), where G is a p-group. As an application, k(G) is calculated for special cases of p-groups. A method of estimating k(G) for some finite groups, others then p-groups is also presented.

متن کامل

FINITE GROUPS WITH FIVE NON-CENTRAL CONJUGACY CLASSES

‎Let G be a finite group and Z(G) be the center of G‎. ‎For a subset A of G‎, ‎we define kG(A)‎, ‎the number of conjugacy classes of G that intersect A non-trivially‎. ‎In this paper‎, ‎we verify the structure of all finite groups G which satisfy the property kG(G-Z(G))=5, and classify them‎.

متن کامل

Finite Groups Have More Conjugacy Classes

We prove that for every > 0 there exists a δ > 0 so that every group of order n ≥ 3 has at least δ log2 n/(log2 log2 n) 3+ conjugacy classes. This sharpens earlier results of Pyber and Keller. Bertram speculates whether it is true that every finite group of order n has more than log3 n conjugacy classes. We answer Bertram’s question in the affirmative for groups with a trivial solvable radical.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archiv der Mathematik

سال: 2005

ISSN: 0003-889X,1420-8938

DOI: 10.1007/s00013-005-1398-7